Abstract

MotivationAccurate prediction of protein contact-map is essential for accurate protein structure and function prediction. As a result, many methods have been developed for protein contact map prediction. However, most methods rely on protein-sequence-evolutionary information, which may not exist for many proteins due to lack of naturally occurring homologous sequences. Moreover, generating evolutionary profiles is computationally intensive. Here, we developed a contact-map predictor utilizing the output of a pre-trained language model ESM-1b as an input along with a large training set and an ensemble of residual neural networks.ResultsWe showed that the proposed method makes a significant improvement over a single-sequence-based predictor SSCpred with 15% improvement in the F1-score for the independent CASP14-FM test set. It also outperforms evolutionary-profile-based methods trRosetta and SPOT-Contact with 48.7% and 48.5% respective improvement in the F1-score on the proteins without homologs (Neff = 1) in the independent SPOT-2018 set. The new method provides a much faster and reasonably accurate alternative to evolution-based methods, useful for large-scale prediction.Availability and implementationStand-alone-version of SPOT-Contact-LM is available at https://github.com/jas-preet/SPOT-Contact-Single. Direct prediction can also be made at https://sparks-lab.org/server/spot-contact-single. The datasets used in this research can also be downloaded from the GitHub.Supplementary information Supplementary data are available at Bioinformatics online.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.