Abstract
Sports videos are widely used by athletes and coaches for training and match analysis purposes outside the mainstream audience. Sports videos should be effectively classified into different genres to easily retrieve and index them from large video datasets. Manual labelling classification methods may cause errors and have low accuracy. Classification based on video content analysis is challenging for computer vision-based techniques. This work introduces an improved focus-net deep learning (DL) model called the Convolutional squeeze U-Net based encoder-decoder for sports video retrieval and classification. First, the keyframes are extracted from the input sports video using a clustering and optical flow analysis method. In the next stage, the frames are pre-processed using a smoothed shock filtering technique to remove the noise. The process of image segmentation is carried out using a Convolutional squeeze U-Net based encoder-decoder model. Finally, the sports video can be classified using the softmax classifier. A CNN (convolutional neural network) is utilized at the encoder section for extracting the features and fed to the decoder for video classification. The experiments are performed in the UCF101 dataset, and the proposed model achieved an overall accuracy of 99.68%. Hence, it is proven that the proposed focus-net model can be efficiently utilized in sports video classification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Engineering Applications of Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.