Abstract
Table tennis is a fast-paced, explosive sport that puts a lot of strain and stress on players’ lower limbs, particularly their knee joints. This work built a thorough mathematical model to investigate the dynamic and kinematic properties of the knee joint under various motion situations, with the goal of better understanding the biomechanical behavior of the knee joint in table tennis. A model of knee joint motion that takes into account the two degrees of freedom—flexion, extension, and rotation—is put forth based on the concepts of human biomechanics and kinematics theory. This model uses the Newton Euler equation to explain the mechanical behavior of the knee joint and integrates internal forces like muscle forces and external factors like ground reaction forces for torque balance analysis. This study offers a thorough examination of the force distribution and knee joint trajectory in table tennis using numerical simulation techniques. The findings show that the knee joint undergoes considerable compression and shear forces during intense activity, and that the joint’s stress properties vary significantly depending on the kind of movement. This finding is a valuable resource for table tennis players’ knee joint injury prevention and rehabilitation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.