Abstract
Neuromuscular training in young athletes improves performance and decreases the risk of injuries during sports activities. These effects are primarily ascribed to the enhancement of muscle strength and power but also balance, speed and agility. However, most studies have failed to demonstrate significant improvement in these abilities. This is probably due to the fact that traditional tests do not reflect training methods (e.g., plyometric training vs. isometric or isokinetic strength testing, dynamic balance training vs. static balance testing). The protocols utilized in laboratories only partially fulfill the current needs for testing under sport-specific conditions. Moreover, laboratory testing usually requires skilled staff and a well equipped and costly infrastructure. Nevertheless, experience demonstrates that high-technology and expensive testing is not the only way to proceed. A number of physical fitness field tests are available today. However, the low reliability and limited number of parameters retrieved from simple equipment used also limit their application in competitive sports. Thus, there is a need to develop and validate a functional assessment platform based on portable computerized systems. Variables obtained should be directly linked to specific features of particular sports and capture their complexity. This is essential for revealing weak and strong components of athlete performance and design of individually-tailored exercise programs. Therefore, identifying the drawbacks associated with the assessment of athlete performance under sport-specific conditions would provide a basis for the formation of an innovative approach to their long-term systematic testing. This study aims (i) to review the testing methods used for the evaluation of the effect of neuromuscular training on sport-specific performance in young athletes, (ii) to introduce stages within the Sport Longlife Diagnostic Model, and (iii) to propose future research in this topic. Analysis of the literature identified gaps in the current standard testing methods in terms of their low sensitivity in discriminating between athletes of varied ages and performance levels, insufficent tailoring to athlete performance level and individual needs, a lack of specificity to the requirements of particular sports and also in revealing the effect of training. In order to partly fill in these gaps, the Sport Longlife Diagnostic Model was proposed.
Highlights
All of us are aware of the importance of reaching the correct diagnosis to identify the illness and craft a prompt treatment
Though sport cannot be compared with clinics, the right and accurate assessment of athlete performance is crucial for designing effective training programs
Identifying symptoms associated with a particular disease by assessing the body balance, muscle strength and power or hamstring flexibility may be considered as a “preventive” tool before it starts to become a chronic disease
Summary
All of us are aware of the importance of reaching the correct diagnosis to identify the illness and craft a prompt treatment. Getting the right diagnostics is a key for physical fitness development in general population. It provides useful information on their strengths and weakness and in this way it may reveal potential health risks. Most of the diseases have been linked to the elderly population; today, more than ever before they affect middle-aged people (e.g., low back pain), and even the young generation (e.g., diabetes). This issue could be related to workplace conditions (occupational stress, manual operations, etc.) and/or a sedentary way of life. Identifying symptoms associated with a particular disease by assessing the body balance, muscle strength and power or hamstring flexibility may be considered as a “preventive” tool before it starts to become a chronic disease
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.