Abstract

BackgroundHaemoproteus (Parahaemoproteus) species (Haemoproteidae) are widespread blood parasites that can cause disease in birds, but information about their vector species, sporogonic development and transmission remain fragmentary. This study aimed to investigate the complete sporogonic development of four Haemoproteus species in Culicoides nubeculosus and to test if phylogenies based on the cytochrome b gene (cytb) reflect patterns of ookinete development in haemosporidian parasites. Additionally, one cytb lineage of Haemoproteus was identified to the species level and the in vitro gametogenesis and ookinete development of Haemoproteus hirundinis was characterised.MethodsLaboratory-reared C. nubeculosus were exposed by allowing them to take blood meals on naturally infected birds harbouring single infections of Haemoproteus belopolskyi (cytb lineage hHIICT1), Haemoproteus hirundinis (hDELURB2), Haemoproteus nucleocondensus (hGRW01) and Haemoproteus lanii (hRB1). Infected insects were dissected at intervals in order to detect sporogonic stages. In vitro exflagellation, gametogenesis and ookinete development of H. hirundinis were also investigated. Microscopic examination and PCR-based methods were used to confirm species identity. Bayesian phylogenetic inference was applied to study the relationships among Haemoproteus lineages.ResultsAll studied parasites completed sporogony in C. nubeculosus. Ookinetes and sporozoites were found and described. Development of H. hirundinis ookinetes was similar both in vivo and in vitro. Developing ookinetes of this parasite possess long outgrowths, which extend longitudinally and produce the apical end of the ookinetes. A large group of closely related Haemoproteus species with a similar mode of ookinete development was determined. Bayesian analysis indicates that this character has phylogenetic value. The species identity of cytb lineage hDELURB2 was determined: it belongs to H. hirundinis.ConclusionsCulicoides nubeculosus is susceptible to and is a likely natural vector of numerous species of Haemoproteus parasites, thus worth attention in haemoproteosis epidemiology research. Data about in vitro development of haemoproteids provide valuable information about the rate of ookinete maturation and are recommended to use as helpful step during vector studies of haemosporidian parasites, particularly because they guide proper dissection interval of infected insects for ookinete detection during in vivo experiments. Additionally, in vitro studies readily identified patterns of morphological ookinete transformations, the characters of which are of phylogenetic value in haemosporidian parasites.

Highlights

  • Haemoproteus (Parahaemoproteus) species (Haemoproteidae) are widespread blood parasites that can cause disease in birds, but information about their vector species, sporogonic development and transmission remain fragmentary

  • In vitro studies readily identified patterns of morphological ookinete transformations, the characters of which are of phylogenetic value in haemosporidian parasites

  • This study investigated the sporogonic development of four Haemoproteus (Parahaemoproteus) parasites: Haemoproteus belopolskyi, H. hirundinis, H. nucleocondensus and Haemoproteus lanii

Read more

Summary

Introduction

Haemoproteus (Parahaemoproteus) species (Haemoproteidae) are widespread blood parasites that can cause disease in birds, but information about their vector species, sporogonic development and transmission remain fragmentary. During the past ten years, it has been shown that several Haemoproteus species can be harmful to their avian hosts, compromising their health and even causing mortality, especially in non-adapted birds [6,7,8,9] This calls for additional studies aimed at a better understanding of pathogen transmission. Due to the big variety of Haemoproteus species and the scarcity of detailed information about patterns of sporogonic development in the majority of the described species, understanding haemoproteid parasite sporogony remains essential for better understanding the biology of haemosporidians. This calls for additional experimental and field vector research

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call