Abstract

In the study, we used a Pilimin IR-10 spark discharge generator as a source of pulsed radiation of hot plasma; a corona discharge generator - as a source of cold plasma; a DKB-9 low-pressure mercury lamp - as a source of continuous radiation of UV band, wavelength of 253.7 nm. The samples were processed in Petri dishes, 40 mm in diameter, their volume being 4 and 10 cm3. The study used an L-tyrosine solution in distilled water (the concentration: 160 mg/L), a suspension of bacteria and spores of micromycetes (its concentration being ~106 cells per 1 ml). Tyrosine conversion products were identified spectrophotometrically before and after treatment. The biocidal and sporicidal effects were assessed by counting CFU (colony-forming units) after seeding incubation at 27-37°C. The oxidation of tyrosine by HO2• radicals was found to be impossible. Under 2 the action of nitrogen compounds, nitration proceeds with 3-nitrotyrosine formation. The nitration reaction is slow, taking about 100 h. A possible nitration mechanism is through the formation of the nitronium ion NO2+ in an acidic medium.The biocidal effect of hot plasma radiation turned out to be weaker than that of UV radiation of a DKB-9 lamp. This is due to the difference in their emission spectrum. The sporicidal effect of hot plasma radiation was more pronounced: a 10-fold decrease in the number of CFU was observed at radiation doses of 200-280 J. Under the action of UV radiation, at the same doses, the decrease in the number of CFU was from 3 to ~30%. The sporicidal effect of hot plasma radiation is due to the decay of a long-living …ONOOH/ONOO-… complex with the formation of a nitric oxide and a nitronium ion in an acidic medium. The study showed the viability of spores under the action of pulsed radiation of hot plasma to decrease. While the light radiation of a UV lamp, under studied conditions, slightly penetrates the protective coating of a spore. The sporicidal effect of hot plasma radiation is due to the decay of a long-living …ONOOH/ONOO-… complex with the formation of a nitric oxide and a nitronium ion in an acidic medium. Nitration plays a decisive role in the sporicidal action of the hot plasma radiation of a spark discharge. The principle of the sporicidal effect of gas-discharge plasma radiation can be used to develop disinfecting devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call