Abstract
The bacterial endospore cortex peptidoglycan is synthesized between the double membranes of the developing forespore and is required for attainment of spore dehydration and dormancy. The Bacillus subtilis spoVB, spoVD and spoVE gene products are expressed in the mother cell compartment early during sporulation and play roles in cortex synthesis. Here we show that mutations in these genes block synthesis of cortex peptidoglycan and cause accumulation of peptidoglycan precursors, indicating a defect at the earliest steps of peptidoglycan polymerization. Loss of spoIV gene products involved in activation of later, sigma(K)-dependent mother cell gene expression results in decreased synthesis of cortex peptidoglycan, even in the presence of the SpoV proteins that were synthesized earlier, apparently due to decreased precursor production. Data show that activation of sigma(K) is required for increased synthesis of the soluble peptidoglycan precursors, and Western blot analyses show that increases in the precursor synthesis enzymes MurAA, MurB, MurC and MurF are dependent on sigma(K) activation. Overall, our results indicate that a decrease in peptidoglycan precursor synthesis during early sporulation, followed by renewed precursor synthesis upon sigma(K) activation, serves as a regulatory mechanism for the timing of spore cortex synthesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.