Abstract
We present an analysis of two separate and distinct sporadic layer events in the mesosphere and lower thermosphere region above the Arecibo Observatory. These layers were observed in both neutral K and ionic Ca + with lidars, and in electron density with incoherent scatter radar. Temperature profiles were determined from the K lidar. One sporadic event was a high altitude layer, in which both atomic and ion sporadic layers were positioned above 100 km altitude. This represents a relatively common sporadic layer visible in both ions and neutrals at Arecibo. The other observation was less typical, with a lower altitude and more diffuse sporadic E layer, extending from below 90 km to above 95 km, which dissipated coincident with growth of a sporadic neutral K layer. We analyze these separate events using a temperature-dependent chemical model, which employs commonly accepted chemical processes. We find that the model successfully reproduces the high altitude layer of June 12–13, 2002. The result shows a temperature dependence related to the chemical lifetimes of the metallic constituents, and that the neutral layer would not have formed had the temperature profile matched that of the MSIS-90 model. Second, the temperature dependent chemistry model also reproduced K + in close agreement with electron densities on June 14–15, 2002. However, the modeled neutrals do not agree well with the observation above 90 km, and it likely requires inclusion of dynamical forcing and advection. We speculate that model and observational deficiencies, primarily exclusion of dynamics such as advection and wave interactions, are the likely shortcomings in the failure to reproduce the observations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Atmospheric and Solar-Terrestrial Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.