Abstract

The S4max data retrieved from the Constellation Observing System for the Meteorology, Ionosphere, and Climate (COSMIC) radio occultation (RO) measurements during 2007 to 2015 is adopted to investigate the global distribution and seasonal variation of the sporadic E (Es) layers in the present work. The long-term and short-term global Es occurrence maps are presented and the spatial and temporal distributions of Es occurrence rates (ORs) are further confirmed and studied. The International Geomagnetic Reference Field model (IGRF12) is used to calculate the horizontal intensity and inclination of the Earth’s magnetic field. The analysis shows that the Earth’s magnetic field is one of the fundamental reasons for the global distribution of the Es layers. In addition, the Horizontal Wind Field model HWM14 and the IGRF12 model were employed to calculate the vertical ion convergence (VIC) to examine the role of neutral wind shear in the global distribution of the Es ORs. The results reveal that the middle latitude distribution of simulated vertical concentration of Fe+ is similar to that of Es ORs, which indicates that the VIC induced by the neutral wind shear is an important factor in determining the geographical distribution, summer maximum (or winter minimum) and diurnal characteristics of Es ORs in middle latitudes. The new findings mainly include the following two aspects: (1) in summer over mid-latitudes, VIC peaks in the morning and afternoon to evening, which explains the semidiurnal behavior of Es ORs; (2) VIC reaches its minimum value in low-altitude (100 km) areas, which is the reason for the significant decrease in Es ORs in low-altitude areas. The disagreements between the VIC and Es ORs indicate that other processes, such as the meteor influx rate, the ionospheric electric fields and atmospheric tides, should also be considered as they may have an important impact on the variation of Es layers.Graphical

Highlights

  • Introduction The ionosphere sporadicSporadic E (Es) (Es) layers are the ionized part at 90–130 km altitudes of Earth’s upper atmosphere

  • In this study, the global distributions and seasonal variations of Es occurrence rates (ORs) are investigated by using the S4max data from COSMIC radio occultation (RO) measurements during 2007 to 2015

  • The present study analyzes the relationship between Es ORs and the Earth’s magnetic field, and the results show that the Earth’s magnetic field, including its horizontal intensity and inclination, is one of the factors responsible for the global distribution of Es layers

Read more

Summary

Introduction

Introduction The ionosphere sporadicE (Es) layers are the ionized part at 90–130 km altitudes of Earth’s upper atmosphere.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call