Abstract

BackgroundFacioscapulohumeral muscular dystrophy 1 (FSHD1) has an autosomal dominant pattern of inheritance and primarily affects skeletal muscle. The genetic cause of FSHD1 is contraction of the D4Z4 macrosatellite array on chromosome 4 alleles associated with a permissive haplotype causing infrequent sporadic expression of the DUX4 gene. Epigenetically, the contracted D4Z4 array has decreased cytosine methylation and an open chromatin structure. Despite these genetic and epigenetic changes, the majority of FSHD myoblasts are able to repress DUX4 transcription. In this study we hypothesized that histone modifications distinguish DUX4 expressing and non-expressing cells from the same individuals.ResultsFSHD myocytes containing the permissive 4qA haplotype with a long terminal D4Z4 unit were sorted into DUX4 expressing and non-expressing groups. We found similar CpG hypomethylation between the groups of FSHD-affected cells suggesting that CpG hypomethylation is not sufficient to trigger DUX4 expression. A survey of histone modifications present at the D4Z4 region during cell lineage commitment revealed that this region is bivalent in FSHD iPS cells with both H3K4me3 activating and H3K27me3 repressive marks present, making D4Z4 poised for DUX4 activation in pluripotent cells. After lineage commitment, the D4Z4 region becomes univalent with H3K27me3 in FSHD and non-FSHD control myoblasts and a concomitant increase in H3K4me3 in a small fraction of cells. Chromatin immunoprecipitation (ChIP) for histone modifications, chromatin modifier proteins and chromatin structural proteins on sorted FSHD myocytes revealed that activating H3K9Ac modifications were ~ fourfold higher in DUX4 expressing FSHD myocytes, while the repressive H3K27me3 modification was ~ fourfold higher at the permissive allele in DUX4 non-expressing FSHD myocytes from the same cultures. Similarly, we identified EZH2, a member of the polycomb repressive complex involved in H3K27 methylation, to be present more frequently on the permissive allele in DUX4 non-expressing FSHD myocytes.ConclusionsThese results implicate PRC2 as the complex primarily responsible for DUX4 repression in the setting of FSHD and H3K9 acetylation along with reciprocal loss of H3K27me3 as key epigenetic events that result in DUX4 expression. Future studies focused on events that trigger H3K9Ac or augment PRC2 complex activity in a small fraction of nuclei may expose additional drug targets worthy of study.

Highlights

  • Facioscapulohumeral muscular dystrophy 1 (FSHD1) has an autosomal dominant pattern of inheritance and primarily affects skeletal muscle

  • We show that all D4Z4 arrays are bivalent with respect to repressive and activating histone modifications in stem cells and poised for double homeobox protein 4 (DUX4) expression, consistent with the observation of DUX4 expression at the 4 cell embryonic stage where DUX4 appears to be instrumental in establishing the epigenetic profile of the early embryo [8]

  • The control and FSHD1 myoblasts utilized in this study were PCR amplified with these long last partial (LLP) primers and identified to have the 4q A161-L haplotype (Fig. 1c)

Read more

Summary

Introduction

Facioscapulohumeral muscular dystrophy 1 (FSHD1) has an autosomal dominant pattern of inheritance and primarily affects skeletal muscle. The contracted D4Z4 array has decreased cytosine methylation and an open chromatin structure Despite these genetic and epigenetic changes, the majority of FSHD myoblasts are able to repress DUX4 transcription. Regardless of the genetic mechanism, FSHD results from abnormal expression of double homeobox protein 4 (DUX4) in skeletal muscle [7]. A recent proteomics-based study identified proteins that bind to the D4Z4 array and showed that nucleosome remodeling deacetylase (NuRD) and CAF-1 complexes repress DUX4 transcription in control myoblasts and induced pluripotent stem cells [9]. The D4Z4 array length appears to be critical for DUX4 repression because FSHD-causing array contractions result in toxic DUX4 expression when they occur on a common 4q haplotype that includes a polyadenylation signal at the end of the last D4Z4 unit [7, 10, 11]. Array length is not the only mediator of transcriptional repression because even in the context of an array contraction, DUX4 remains under significant incomplete repression with cultured myoblasts showing stochastic bursts of transcription in a small fraction of myonuclei [12,13,14]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.