Abstract
Shape memory alloy (SMA) actuators in the wire form are attractive because of their simplistic architecture and electrical operation, and their manufacturability at high yields and low cost. While SMA actuators are known for their superior work density among smart materials, packaging long lengths of SMA wire needed for moderate to large motions is an ongoing technical challenge. This article investigates spooling as a packaging approach to provide more compact actuator footprints. An analytical, quasi-static model is derived to provide a foundational tool for the analysis and synthesis of spool-packaged SMA wire actuators. The model predicts motion with respect to a generalized architecture, and specifiable geometric, material, and loading parameters. The model prediction accounts for the effects of local friction loss and bending strains, and for a “binding” limitation due to accumulated friction. An experimental validation study demonstrates the model’s ability to predict actuator motion well in terms of form and magnitude with respect to load and packaging geometry. This model provides a basis for a systematic application of spooled-packaging techniques to overcome packaging limitations of SMA, positioning SMA wire actuators as a viable alternative in many applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Intelligent Material Systems and Structures
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.