Abstract

We propose an efficient spoofing signal generation method that uses the processing results of a global positioning system (GPS) receiver for authentic GPS signals. Conventional methods of generating spoofing signals use expensive GPS simulators because the structures of the spoofing signals must be almost identical to those of the GPS signals. Simulators require GPS ephemeris at a specific time and target position. Subsequently, a complicated process is used to generate navigation data using the ephemeris and model error sources such as the satellite clock bias and ionospheric delay. In contrast, the proposed method can generate spoofing signals for the desired target position without requiring GPS simulators; it does so by adjusting the signal processing results of the receiver. Using the navigation results of the receiver, such as position and velocity, the pseudorange delay and spoofing Doppler frequency between the estimated position of the receiver and the target spoofing position are obtained; these are then applied to shift the signal-tracking results of the receiver to create a new signal for the target spoofing position. Our experimental results indicate that the proposed algorithm can effectively generate spoofing signals with characteristics highly similar to those of authentic GPS signals. In addition, we confirmed that the spoofing signals generated by the proposed method are difficult to be detected using conventional spoofing detection techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.