Abstract
As more and more visible light communication (VLC) and visible light sensing (VLS) systems are mounted on today’s light fixtures, how to guarantee the authenticity of the visible light (VL) signal in these systems becomes an urgent problem. This is because almost all of today’s light fixtures are unprotected and can be openly accessed by almost anyone, and hence are subject to tampering and substitution attacks. In this paper, by exploiting the intrinsic linear superposition characteristics of visible light, we propose VL-Watchdog, a scalable and always-on signal-level spoofing detection framework that is applicable to both VLC and VLS systems. VL-Watchdog is based on redundant orthogonal encoding of the transmitted visible light, and can be implemented as a small hardware add-on to an existing VL system. The effectiveness of the proposed framework was validated through extensive numerical evaluations against a comprehensive set of factors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.