Abstract
We investigate the vulnerability of convolutional neural network (CNN) based face-recognition (FR) systems to presentation attacks (PA) performed using custom-made silicone masks. Previous works have studied the vulnerability of CNN-FR systems to 2D PAs such as print-attacks, or digital- video replay attacks, and to rigid 3D masks. This is the first study to consider PAs performed using custom-made flexible silicone masks. Before embarking on research on detecting a new variety of PA, it is important to estimate the seriousness of the threat posed by the type of PA. In this work we demonstrate that PAs using custom silicone masks do pose a serious threat to state-of-the-art FR systems. Using a new dataset based on six custom silicone masks, we show that the vulnerability of each FR system in this study is at least 10 times higher than its false match rate. We also propose a simple but effective presentation attack detection method, based on a low-cost thermal camera.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.