Abstract

Spontaneously sp2-carbonized polyamides (PA1, PA2) were prepared via Knoevenagel-type side reactions of malonyl moieties under mild conditions in the polycondensation of dicarbonyl chloride and diamine. Both polymers were soluble in water and emissive in the visible region, and the fluorescence (FL) intensity and the maximum wavelength were highly dependent on the excitation wavelength and the pH. Their chemical structures and FL origin were clarified by performing various spectroscopic analyses. π*-π transition was assumed to be allowed in an enol form based on the conjugated structure formed by the side reaction; this was responsible for its pH dependency and high FL quantum efficiency. In particular, PA2, which comprises the tertiary amide linkage, showed quick endocytosis, low cytotoxicity, excellent biocompatibility, and exclusively stained lysosomes with the lowest intracellular pH. These results will help in understanding the origin of the FL emission of carbonized nanomaterials and exploring more advanced functions in the field of bioimaging.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call