Abstract

This work presents carbon supported Platinum (Pt) nanoparticles decorated with a submonolayer of Bismuth (Bi) to enhance the anodic electro-oxidation efficiency for a Direct Formic Acid Fuel Cell (DFAFC). The coverage of Bi adatoms, as measured by cyclic voltammetry was controlled in the range of 15–75%. This ex situ study of the Bi decorated Pt/C catalysts was done using a three electrode electrochemical cell at room temperature to access formic acid electro-oxidation performance and durability. Two commercial Pt/C catalysts were investigated of varying average size: 2.4nm and 3.4nm. An optimal Bi coverage was observed to be 54% coverage or greater for both catalyst sizes, resulting in a favorable decrease in the formic acid onset potential by greater than 0.1V. The 3.4nm catalyst demonstrated higher performance over that of 2.4nm, with a 23-fold current density increase at 0.2V vs. RHE. The results indicate that Bi decorated Pt nanoparticles have excellent electrochemical properties for the electro-oxidation of formic acid (high electro-catalytic activity and excellent stability) due to a combination of the electronic effect and third-body effect, thereby promoting the non-poisoning direct electro-oxidation reaction pathway. Based on position of CO stripping peak for 15% Bi coverage, Pt–COads bond strength decreased for 3.4nm Pt/C whereas no shift was observed in the Pt–COads bond strength for 2.4nm Pt/C. Chronoamperometry results show much better long-term electro-catalytic activity for Bi decorated Pt nanoparticles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.