Abstract

Understanding fluid transport and phase changes in nanopore structures is of great interest to many application fields, from energy conversion to water harvesting. This work discusses the spontaneous oscillations of the water saturation of mesoporous thin films, in the zone adjacent to a sessile water drop, at ambient conditions. The wetting-front dynamics onto the film is described by considering three coexisting phenomena: infiltration from the water drop, condensation from air vapor, and evaporation to the ambient. It was found that the oscillations follow spontaneous condensation-evaporation imbalances, which are governed by the hysteretic character of the adsorption-desorption behavior of the mesoporous material. The outcomes of this work provide insights on the complex interplay between water and nanopore structures, which has practical implications for the handling of humid microenvironments in lab-on-a-chip technology, as well as for many processes that take part of the cycle of water in nature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call