Abstract

The micelle-vesicle-micelle transition in aqueous mixtures of the cationic surfactant cetyl trimethyl ammonium bromide (CTAB) and the anionic surfactant-like ionic liquid 1-butyl-3-methylimidazolium octyl sulfate, [C4mim][C8SO4] has been investigated by using dynamic light scattering (DLS), transmission electron microscopy (TEM), surface tension, conductivity, and fluorescence anisotropy at different volume fractions of surfactant. The surface tension value decreases sharply with increasing CTAB concentration up to ∼0.38 volume fraction and again increases up to ∼0.75 volume fraction of CTAB. Depending upon their relative amount, these surfactants either mixed together to form vesicles and/or micelles, or both of these structures were in equilibrium. Fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene (DPH), incorporated in this system at different composition of surfactant indicates the formation of micelle and vesicle structures. The apparent hydrodynamic diameter of these large multilamellar vesicles is about ∼200 nm-300 nm obtained by DLS measurement and finally confirmed by TEM micrographs. The large multilamellar vesicles are transformed into small unilamellar ones by sonication using a Lab-line instruments probe sonicator with a diameter of ∼90-125 nm. To investigate the heterogeneity, solvent, and rotational relaxation of coumarin-153 (C-153) have been investigated in these unilamellar vesicles by using picosecond time-resolved fluorescence spectroscopic technique. The solvation dynamics of C-153 in these vesicles is found to be biexponential with average time constant ∼580 ps. This indicates the slow relaxation of water molecules in the surfactant bilayer. In accordance with solvation dynamics, fluorescence anisotropy analysis of C-153 in unilamellar vesicles also indicates hindered rotation compared to bulk water.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.