Abstract

Graphene grain boundaries (GBs) have attracted interest for their ability to host nearly dispersionless electronic bands and magnetic instabilities. Here, we employ quantum transport and universal conductance fluctuation measurements to experimentally demonstrate a spontaneous breaking of time-reversal symmetry across individual GBs of chemical vapor deposited graphene. While quantum transport across the GBs indicate spin-scattering-induced dephasing and hence formation of local magnetic moments, below T≲4 K we observe complete lifting of time-reversal symmetry at high carrier densities (n≳5×10^{12} cm^{-2}) and low temperature (T≲2 K). An unprecedented thirtyfold reduction in the universal conductance fluctuation magnitude with increasing doping density further supports the possibility of an emergent frozen magnetic state at the GBs. Our experimental results suggest that realistic GBs of graphene can be a promising resource for new electronic phases and spin-based applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.