Abstract

We study the synchronization of Kuramoto oscillators with all-to-all coupling in the presence of slow, noisy frequency adaptation. In this paper, we develop a model for oscillators, which adapt both their phases and frequencies. It is found that this model naturally reproduces some observed phenomena that are not qualitatively produced by the standard Kuramoto model, such as long waiting times before the synchronization of clapping audiences. By assuming a self-consistent steady state solution, we find three stability regimes for the coupling constant k , separated by critical points k{1} and k{2}: (i) for k<k{1} only the stable incoherent state exists; (ii) for k>k{2}, the incoherent state becomes unstable and only the synchronized state exists; and (iii) for k{1}<k<k{2} both the incoherent and synchronized states are stable. In the bistable regime spontaneous transitions between the incoherent and synchronized states are observed for finite ensembles. These transitions are well described as a stochastic process on the order parameter r undergoing fluctuations due to the system's finite size, leading to the following conclusions: (a) in the bistable regime, the average waiting time of an incoherent-->coherent transition can be predicted by using Kramer's escape time formula and grows exponentially with the number of oscillators; (b) when the incoherent state is unstable (k>k{2}), the average waiting time grows logarithmically with the number of oscillators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.