Abstract

The principal cells of the chick tangential nucleus are vestibular nucleus neurons participating in the vestibular reflexes. In 16-day embryos, the application of glutamate receptor antagonists abolished the postsynaptic responses generated on vestibular-nerve stimulation, but spontaneous synaptic activity was largely unaffected. Here, spontaneous synaptic activity was characterized in principal cells from brain slices at E16 using whole cell voltage-clamp recordings. With KCl electrodes, the frequency of spontaneous inward currents was 3.1 Hz at -60 mV, and the reversal potential was +4 mV. Cs-gluconate pipette solution allowed the discrimination of glycine/GABA(A) versus glutamate receptor-mediated events according to their different reversal potentials. The ratio for spontaneous excitatory to inhibitory events was about 1:4. Seventy-four percent of the outward events were GABA(A), whereas 26% were glycine receptor-mediated events. Both pre- and postsynaptic GABA(B) receptor effects were shown, with presynaptic GABA(B) receptors inhibiting 40% of spontaneous excitatory postsynaptic currents (sEPSCs) and 53% of spontaneous inhibitory postsynaptic currents (sIPSCs). With TTX, the frequency decreased approximately 50% for EPSCs and 23% for IPSCs. These data indicate that the spontaneous synaptic activity recorded in the principal cells at E16 is primarily inhibitory, action potential-independent, and based on the activation of GABA(A) receptors that can be modulated by presynaptic GABA(B) receptors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call