Abstract

The capacity degredation in layered Ni-rich LiNixCoyMnzO2 (x ≥ 0.8) cathode largely originated from drastic surface reactions and intergranular cracks in polycrystalline particles. Herein, we report a highly stable single-crystal LiNi0.83Co0.12Mn0.05O2 cathode material, which can deliver a high specific capacity (∼209 mAh g-1 at 0.1 C, 2.8-4.3 V) and meanwhile display excellent cycling stability (>96% retention for 100 cycles and >93% for 200 cycles). By a combination of in situ X-ray diffraction and in situ pair distribution function analysis, an intermediate monoclinic distortion and irregular H3 stack are revealed in the single crystals upon charging-discharging processes. These structural changes might be driven by unique Li-intercalation kinetics in single crystals, which enables an additional strain buffer to reduce the cracks and thereby ensure the high cycling stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.