Abstract

A sol-gel process for preparing SnO2 monolith of high specific surface area and transparency from chloride solution is described. Without introducing any alkaline precipitating reagent to induce condensation, this new process employs tin chloride (or its hydrate), water, and, optionally, alcohols as the only process reagents. Spontaneous solution-to-sol and sol-to-gel transitions take place upon mixing these reagents under appropriate conditions, and the entire transition processes are carried out under acidic conditions (typically pH ≤ 4.0). The rate of condensation has been found to increase with decreasing SnCl4 concentration, which corresponds to decreasing solution acidity, and with increasing temperature. For fixed starting salt concentration and temperature, there exists an optimum amount of ethanol addition for the fastest condensation. Good performance of thus derived SnO2 monolith has been demonstrated in two applications, including catalytic oxidation and solid-state gas-sensing for carbon monoxide.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.