Abstract
The role of centrally located and distributed base pair mismatches (‘melting bubbles’) on localized bending and stiffness of short dsDNA fragments is evaluated using time-dependent fluorescence lifetime measurements. Distributed melting bubbles are found to induce larger bending angles and decreased levels of stiffness in DNA than centrally located ones of comparable overall size. Our results indicate that spontaneous local opening-up of the DNA duplex could facilitate sharp bending of short DNA strands even in the absence of DNA binding proteins. We also find that the occurrence of two closely spaced melting bubbles will generally be favored when a large energetic barrier must be overcome in forming the desired bent DNA structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.