Abstract
ZnO nanowires are usually formed by physical and chemical deposition techniques following the bottom-up approach consisting in supplying the reactants on a nucleation surface heated at a given temperature. We demonstrate an original alternative approach for the formation of ZnO nanowire arrays with high structural and optical quality, which is based on the spontaneous transformation of a ZnO thin film deposited by sol-gel process following a simple annealing. The development of these ZnO nanowires occurs through successive shape transitions, including the intermediate formation of pyramid-shaped islands. Their nucleation under near-equilibrium conditions is expected to be governed by thermodynamic considerations via the total free energy minimization related to the nanowire shape. It is further strongly assisted by the drastic reordering of the matter and by recrystallization phenomena through the massive transport of zinc and oxygen atoms towards the localized growth areas. The spontaneous shape transition process thus combines the easiness and low-cost of sol-gel process and simple annealing with the assets of the vapor phase deposition techniques. These findings cast a light on the fundamental mechanisms driving the spontaneous formation of ZnO nanowires and, importantly, reveal the great technological potential of the spontaneous shape transition process as a promising alternative approach to the more usual bottom-up approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.