Abstract

Spontaneous resolution leading to conglomerate crystals remains a significant challenge. Here we propose the formation of orthogonal homochiral supramolecular helices in at least two dimensions to allow spontaneous resolution. We suggest the design rationale that the chiral species is made into helical building blocks to allow the helix formation. As a proof-of-concept, acetylalanine was made into a helical short azapeptide, its N-amidothiourea derivative containing a β-turn structure, to which a halogen atom was further introduced at the phenylthiourea aromatic ring. The resultant folded species undergoes both intermolecular hydrogen and halogen bonding across the turn structure to form orthogonal intermolecular hydrogen-bonded and halogen-bonded supramolecular helices in two dimensions, and undergoes chiral resolution upon crystallization. Meanwhile, counterparts containing either an F-substituent with weak halogen bonding or no halogen atom crystallize as racemic compounds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.