Abstract

We provide an explicitly hermitian hamiltonian description for the spontaneous radiation of black holes, which is a many-level, multiple-degeneracy generalization of the usual Janeys-Cummings model for two-level atoms. We show that under single-particle radiation and standard Wigner-Wiesskopf approximation, our model yields exactly thermal type power spectrum as hawking radiation requires. While in the many-particle radiation cases, numeric methods allow us to follow the evolution of microscopic state of a black hole exactly, from which we can get the firstly increasing then decreasing entropy variation trend for the radiation particles just as the Page-curve exhibited. Basing on this model analysis, we claim that two ingredients are necessary for resolutions of the information missing puzzle, a spontaneous radiation like mechanism for the production of hawking particles and proper account of the macroscopic superposition happening in the full quantum description of a black hole radiation evolution and, the working logic of replica wormholes is an effect account of this latter ingredient.As the basis for our interpretation of black hole Hawking radiation as their spontaneous radiation, we also provide a fully atomic like inner structure models for their microscopic states definition and origins of their Bekenstein-Hawking entropy, that is, exact solution families to the Einstein equation sourced by matter constituents oscillating across the central point and their quantization. Such a first quantization model for black holes' microscopic state is non necessary for our spontaneous radiation description, but has advantages comparing with other alternatives, such as string theory fuzzball or brick wall models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call