Abstract
At 20 (0)C, both quantal and non-quantal spontaneous acetylcholine release (expressed as miniature endplate potential frequency [f-MEPPs] and the H-effect, respectively) increased during the first 30 min of hypoxia in solution with normal extracellular calcium ([Ca(2+)](o) = 2.0 mM). The hypoxia-induced tenfold increase of the f-MEPPs was virtually absent in low calcium solution([Ca(2+)](o) = 0.4 mM) whereas there was still a significant increment of non-quantal release. This indicates that each of these two processes of acetylcholine release is influenced by mechanisms with different oxygen sensitivity. The rise of f-MEPPs during the onset of hypoxia apparently requires Ca(2+) entry into the nerve terminal, whereas the non-quantal release can be increased by another factors such as a lower level of ATP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.