Abstract

Complex systems are a proving ground for fundamental interactions between components and their collective emergent phenomena. Through intricate design, integrated photonics offers intriguing nonlinear interactions that create new patterns of light. In particular, the canonical Kerr-nonlinear resonator becomes unstable with a sufficiently intense traveling-wave excitation, yielding instead a Turing pattern composed of a few interfering waves. These resonators also support the localized soliton pulse as a separate nonlinear stationary state. Kerr solitons are remarkably versatile for applications, but they cannot emerge from constant excitation. Here, we explore an edge-less photonic-crystal resonator (PhCR) that enables spontaneous formation of a soliton pulse in place of the Turing pattern. We design a PhCR in the regime of single-azimuthal-mode engineering to re-balance Kerr-nonlinear frequency shifts in favor of the soliton state, commensurate with how group-velocity dispersion balances nonlinearity. Our experiments establish PhCR solitons as mode-locked pulses by way of ultraprecise optical-frequency measurements, and we characterize their fundamental properties. Our work shows that sub-wavelength nanophotonic design expands the palette for nonlinear engineering of light.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.