Abstract

We study the possibility of spontaneous formation of a polarization structure in a thermodynamically equilibrium gas of dipolarly interacting two-level molecules. Using the Maxwell-Bloch equations within the framework of the mean-field theory, we find that the antiferroelectric phase transition in a gas with a weak relaxation of the polarization is always a second-order transition. It is shown that if relaxation is neglected, then in the quasi-classical consideration of the translational motion of molecules in the polarization wave, the energy levels of a separate molecule coincide with its quasi-energies that are well known in quantum optics. Thus, to study the statistical properties of the antiferroelectric phase, we apply the generalized Gibbs distribution over quasi-energy states of the molecules. As a result, we determine the characteristic features and the possible parameters of the antiferroelectric state of a gas. In particular, it is found that, owing to the Doppler resonance of part of the molecules with the polarization wave, the properties of the gas antiferroelectrics behind the phase-transition point may radically differ from the properties of the conventional ferroelectrics in the Ginzburg-Landau theory. We also analyze the influence of polarization fluctuations for the case of a ferroelectric transition in a gas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.