Abstract

We propose a system for observing the spontaneous phase locking of two frequency separate mechanical modes in an anti-parity-time symmetric optomechanical system. In our approach, a common optical cavity mode mediates the coupling between two phonon modes, leading to the phase locking of the coupled mechanical modes to a common frequency in the symmetry unbroken regime. We furthermore observe the change of quantum correlation near the exceptional point. Our results are also directly relevant to numerous other physical platforms, such as atomic ensembles in cavity quantum electrodynamics (QED) systems and spin interaction mediated by collective motional mode in trapped ions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.