Abstract

We present a theoretical analysis of the process of spontaneous parametric down conversion (SPDC) in a nonlinear crystal characterized by a linearly-chirped χ(2) grating along the direction of propagation. Our analysis leads to an expression for the joint spectral amplitude, based on which we can derive various spectral–temporal properties of the photon pairs and of the heralded single photons obtained from the photon pairs, including: The single-photon spectrum (SPS), the chronocyclic Wigner function (CWF) and the Schmidt number. The simulations that we present are for the specific case of a collinear SPDC source based on a PPLN crystal with the signal and idler photons emitted close to the telecom window. We discuss the mechanism for spectral broadening due to the presence of a linearly chirped χ(2) grating, showing that not only the width but also to some extent the shape of the SPDC spectrum may be controlled. Also, we discuss how the fact that the different spectral components are emitted on different planes in the crystal leads to single-photon chirp.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.