Abstract

The local crystal structures of many perovskite-structured materials deviate from the average space-group symmetry. We demonstrate, from lattice-dynamics calculations based on quantum chemical force constants, that all of the cesium-lead and cesium-tin halide perovskites exhibit vibrational instabilities associated with octahedral titling in their high-temperature cubic phase. Anharmonic double-well potentials are found for zone-boundary phonon modes in all compounds with barriers ranging from 108 to 512 meV. The well depth is correlated with the tolerance factor and the chemistry of the composition, but is not proportional to the imaginary harmonic phonon frequency. We provide quantitative insights into the thermodynamic driving forces and distinguish between dynamic and static disorder based on the potential-energy landscape. A positive band gap deformation (spectral blue shift) accompanies the structural distortion, with implications for understanding the performance of these materials in applications areas including solar cells and light-emitting diodes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.