Abstract

As it became well known in the past years, Einstein-scalar-Gauss-Bonnet (EsGB) theories evade no-hair theorems and allow for scalarized compact objects including black holes (BH). The coupling function that defines the theory is the main character in the process and nature of scalarization. With the right choice, the theory becomes an extension of general relativity (GR) in the sense any solution to the GR field equations remains a solution in the EsGB theory, but it can destabilize if a certain threshold value of the spacetime curvature is exceeded. Thus BHs can spontaneously scalarized. The most studied driving mechanism to this phenomenon is a tachyonic instability due to an effective negative squared mass for the scalar field. However, even when the coupling is chosen such that this mass is zero, higher order terms with respect to the scalar field can lead to what is coined nonlinear scalarization. In this paper we investigate how Kerr BHs spontaneously scalarize by evolving the scalar field on a fixed background via solving the nonlinear Klein-Gordon equation. We consider two different coupling functions with higher order terms, one that yields a non-zero effective mass and another that does not. We sweep through the Kerr parameter space in its mass and spin and obtain the scalar charge by the end of the evolution when the field settles in an equilibrium stationary state. When there is no tachyonic instability present, there is no probe limit in which the BH scalarizes with zero charge, i.e. there is a gap between bald and hairy BHs and they only connect when the mass goes to zero together with the charge.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call