Abstract
Based on the interactions between the zinc finger protein (ZNF) and single-walled carbon nanotubes (SWCNTs), we design a nanodevice for injecting ZNF spontaneously. The new injection device involves four essential components: a small-diameter SWCNT as a plunger, a large-diameter SWCNT as a tube as well as the nozzle and needle, ZNF and water solution. The injection behavior is demonstrated and analyzed using molecular dynamics simulations. The effects of the diameter, chirality and length of SWCNTs on the injection behavior are analyzed with the center of mass distance, the van der Waals interaction between ZNF and SWCNTs, the root-mean-square deviation of ZNF, and the radius of gyration for ZNF.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.