Abstract

BackgroundHeterogeneity and niche adaptation in bacterial biofilm involve changes to the genetic makeup of the bacteria and gene expression control. We hypothesized that i) spontaneous mutations in the flhD operon can either increase or decrease motility and that ii) the resulting motility heterogeneity in the biofilm might lead to a long-term increase in biofilm biomass.ResultsWe allowed the highly motile E. coli K-12 strain MC1000 to form seven- and fourteen-day old biofilm, from which we recovered reduced motility isolates at a substantially greater frequency (5.4 %) than from a similar experiment with planktonic bacteria (0.1 %). Biofilms formed exclusively by MC1000 degraded after 2 weeks. In contrast, biofilms initiated with a 1:1 ratio of MC1000 and its isogenic flhD::kn mutant remained intact at 4 weeks and the two strains remained in equilibrium for at least two weeks. These data imply that an ‘optimal’ biofilm may contain a mixture of motile and non-motile bacteria.Twenty-eight of the non-motile MC1000 isolates contained an IS1 element in proximity to the translational start of FlhD or within the open reading frames for FlhD or FlhC. Two isolates had an IS2 and one isolate had an IS5 in the open reading frame for FlhD. An additional three isolates contained deletions that included the RNA polymerase binding site, five isolates contained point mutations and small deletions in the open reading frame for FlhC. The locations of all these mutations are consistent with the lack of motility and further downstream within the flhD operon than previously published IS elements that increased motility. We believe that the location of the mutation within the flhD operon determines whether the effect on motility is positive or negative.To test the second part of our hypothesis where motility heterogeneity in a biofilm may lead to a long-term increase in biofilm biomass, we quantified biofilm biomass by MC1000, MC1000 flhD::kn, and mixtures of the two strains at ratios of 1:1, 10:1, and 1:10. After 3 weeks, biofilm of the mixed cultures contained up to five times more biomass than biofilm of each of the individual strains.ConclusionMutations in the flhD operon can exert positive or negative effects on motility, depending on the site of the mutation. We believe that this is a mechanism to generate motility heterogeneity within E. coli biofilm, which may help to maintain biofilm biomass over extended periods of time.Electronic supplementary materialThe online version of this article (doi:10.1186/s12866-016-0878-1) contains supplementary material, which is available to authorized users.

Highlights

  • Heterogeneity and niche adaptation in bacterial biofilm involve changes to the genetic makeup of the bacteria and gene expression control

  • Motility heterogeneity in E. coli K-12 biofilm Bacterial isolates were recovered from biofilms produced by the highly motile MC1000 after 7 and 14 days

  • This study presents several pieces of evidence to support our hypothesis that i) mutants can arise in the flhD operon that decrease motility and that ii) the resulting motility heterogeneity in the biofilm may help the bacteria to maintain biofilm biomass over time

Read more

Summary

Introduction

Heterogeneity and niche adaptation in bacterial biofilm involve changes to the genetic makeup of the bacteria and gene expression control. Adaptation at the level of gene expression is often short term; for example to survive at high [1] or low [2] temperature after a sudden shift. Selection for specific mutations in response to selective pressure can lead to antibiotic resistance (for a recent review, see [3]). This study investigates a combination of adaptive gene expression with selective mutation by individual bacteria within a biofilm. While bacteria respond to these niches at an individual level, the differential responses of many bacteria can lead to phenotypic heterogeneity across the biofilm, in particular in cases where the selective pressure is insufficient to clearly favor one or the other phenotype

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.