Abstract
The time evolution equation of motion and shape are derived for a self-propelled droplet driven by a chemical reaction. The coupling between the chemical reaction and motion makes an inhomogeneous concentration distribution as well as a surrounding flow leading to the instability of a stationary state. The instability results in spontaneous motion by which the shape of the droplet deforms from a sphere. We found that the self-propelled droplet is elongated perpendicular to the direction of motion and is characterized as a pusher.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.