Abstract
Interfacial chemical dynamics on a droplet generate various self-propelled motions. For example, ballistic and random motions arise depending on the physicochemical conditions inside the droplet and its environment. In this study, we focus on the relationship between oxidant concentrations in an aqueous droplet and its mode of self-propelled motion in an oil phase including surfactant. We demonstrated that the chemical conditions inside self-propelled aqueous droplets were changed systematically, indicating that random motion appeared at higher concentrations of oxidants, which were H2SO4 and BrO3-, and ballistic motion at lower concentrations. In addition, spontaneous mode switching from ballistic to random motion was successfully demonstrated by adding malonic acid, wherein the initially observed reduced state of the aqueous solution suddenly changed to the oxidized state. Although we only observed one-time transition and have not yet succeeded to realize alternation between ballistic (reduced state) and random motion (oxidized state), such spontaneous transitions are fundamental steps in realizing artificial cells and understanding the fundamental mechanisms of life-like behavior, such as bacterial chemotaxis originating from periodical run-and-tumble motion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.