Abstract
Self-starting mode-locking is observed in a laser based on a compact III-V diode-pumped quantum-well surface-emitting semiconductor laser technology with a saturable-absorber-free but dispersive cavity. Continuous wave generation of picosecond pulses at a rate of 100 GHz is demonstrated by recording microwave intensity noises, beat frequency, time-resolved optical spectra, and intensity autocorrelation. Coherence of the pulse train is obtained through the frequency noise measurement of the demodulated beat note, demonstrating a timing jitter as low as 110 fs, near the quantum limit. Using a theoretical model based on a generalized Haus master equation, we demonstrate the existence of this mode locked state without the need for saturable absorption. The fundamental physical mechanism is the interplay between self-phase modulation and anomalous dispersion like in cavity soliton together with light–matter interaction-induced time symmetry breaking.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.