Abstract

Multi-cavity photonic systems, known as photonic molecules (PMs), are ideal multi-well potential building blocks for advanced quantum and nonlinear optics. A key phenomenon arising in double well potentials is the spontaneous breaking of the inversion symmetry, i.e. a transition from a delocalized to two localized states in the wells, which are mirror images of each other. Although few theoretical studies have addressed mirror-symmetry breaking in micro and nanophotonic systems, no experimental evidence has been reported to date. Thanks to the potential barrier engineering implemented here, we demonstrate spontaneous mirror-symmetry breaking through a pitchfork bifurcation in a PM composed of two coupled photonic crystal nanolasers. Coexistence of localized states is shown by switching them with short pulses. This offers exciting prospects for the realization of ultra-compact, integrated, scalable optical flip-flops based on spontaneous symmetry breaking. Furthermore, we predict such transitions with few intracavity photons for future devices with strong quantum correlations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.