Abstract

Despite the extensive application of porous nanostructures as oxygen electrocatalysts, it is challenging to synthesize single-metal state materials with porous structures, especially the ultrasmall ones due to the uniform diffusion of the same metal. Herein, we pioneer demonstrate a new size effect-based controllable synthesis strategy for the homogeneous Co nanokarstcaves assisted by Co-CN hybrids (CCHs). The preferential migration of cobalt atoms on the surface of small size zeolitic imidazolate framework (ZIF) with high surface energy during pyrolysis is the key factor for the formation of nanokarstcave structure. Furthermore, graphene can act as a diffusion barrier to prevent the agglomeration of nanoparticles in the synthesis process, which also plays an important role in the formation of porous nanostructures. In alkali media, CCHs achieve overpotential of 287 mV (@10 mA·cm−2) for oxygen evolution reaction (OER) and a half wave potential of 0.86 V (vs. RHE) for oxygen reduction reaction (ORR).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call