Abstract
Molecularly crowded coacervate micro‐droplets are useful protocell constructs but the absence of a physical membrane limits their application as cytomimetic models. Auxiliary surface‐active agents have been harnessed to stabilize the coacervate droplets by irreversible shell formation but endogenous processes of reversible membranization have received minimal attention. Herein, we describe a dynamic alginate/silk coacervate‐based protocell model in which membrane‐less droplets are reversibly reconfigured and inflated into semipermeable coacervate vesicles by spontaneous self‐organization of amphiphilic silk polymers at the droplet surface under non‐neutral charge conditions in the absence of auxiliary agents. We show that membranization can be reversibly controlled endogenously by programming the pH within the protocells using an antagonistic enzyme system such that structural reconfigurations in the protocell microstructure are coupled to the trafficking of water‐soluble solutes. Our results open new perspectives in the design of hybrid protocell models with dynamical structural properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.