Abstract
Non-invasive functional imaging techniques have begun to delineate the underlying neurophysiological basis of obsessive-compulsive disorder (OCD). In the present study, we investigated slow (2–6 Hz) and fast (12.5–30 Hz) spontaneous magnetoencephalographic (MEG) activity in ten patients with obsessive-compulsive disorders compared to ten healthy control subjects. Fast MEG activity was significantly elevated in OCD patients. The corresponding dipole density maxima were concentrated on the left superior temporal gyrus. Although no differences were detected in the absolute dipole numbers between controls and OCD patients regarding slow MEG activity, only the latter showed a clustering of slow MEG activity over their left dorsolateral prefrontal cortex. We conclude that alterations of spontaneous MEG activity in prefrontal and temporal cortices may be linked to the pathogenesis of OCD. Therefore, we provide further functional neuroimaging evidence that the complex features of OCD have neural correlates, which may help in a future understanding of this disease.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.