Abstract

Defects in the xeroderma pigmentosum complementation group A-correcting (XPA) gene, which encodes a component of the nucleotide excision repair (NER) pathway, are associated with the cancer-prone human disease xeroderma pigmentosum. We previously generated mice lacking the XPA gene, which develop normally but are highly sensitive to ultraviolet-B and 7,12-dimethylbenz[a]anthracene-induced skin tumors. Here we report the XPA-deficient mice spontaneously developed hepatocellular adenomas at a low frequency as they aged. Furthermore, oral treatment of XPA-deficient mice with the carcinogen benzo[a]pyrene (B[a]P) resulted in the induction of mainly lymphomas. These tumors appeared earlier and with a higher incidence than in B[a]P-treated wild-type and heterozygous mice. Our results show for the first time that XPA-deficient mice also displayed an increased sensitivity to developing tumors other than tumors of the skin. Mol. Carcinog. 19:46–53, 1997. © 1997 Wiley-Liss, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.