Abstract

The nicotinic acetylcholine receptor (nAChR) and other pentameric ligand-gated ion channels are native to neuronal membranes with an unusual lipid composition. While it is well-established that these receptors can be significantly modulated by lipids, the underlying mechanisms have been primarily studied in model membranes with few lipid species. Here, we use coarse-grained molecular dynamics simulation to probe specific binding of lipids in a complex quasi-neuronal membrane. We ran a total of 50 μs of simulations of a single nAChR in a membrane composed of 36 species of lipids. Competition between multiple lipid species produces a complex distribution. We find that overall, cholesterol selects for concave inter-subunit sites and polyunsaturated fatty acids select for convex M4 sites, while monounsaturated and saturated lipids are unenriched in the nAChR boundary. We propose the "density-threshold affinity" as a metric calculated from continuous density distributions, which reduces to a standard affinity in two-state binding. We find that the density-threshold affinity for M4 weakens with chain rigidity, which suggests that flexible chains may help relax packing defects caused by the conical protein shape. For any site, PE headgroups have the strongest affinity of all phospholipid headgroups, but anionic lipids still yield moderately high affinities for the M4 sites as expected. We observe cooperative effects between anionic headgroups and saturated chains at the M4 site in the inner leaflet. We also analyze affinities for individual anionic headgroups. When combined, these insights may reconcile several apparently contradictory experiments on the role of anionic phospholipids in modulating nAChR.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.