Abstract

Abstract1D structures/patterns (e.g., line defect arrays, 1D Moiré patterns) embedded in 2D materials provide fascinating platforms for exploring versatile intriguing phenomena, for example, 1D Luttinger liquids and charge density waves (CDWs). Despite persistent efforts, incorporating periodic 1D patterns into 2D materials remains an ongoing pursuit. Herein, the direct preparation of monolayer 1D‐defect‐induced Co4Te7 superlattices (with periodic Te defect lines in the upper Te layer in 1T‐CoTe2) is reported, on lattice‐matched SrTiO3(001) (STO(001)) substrates via molecular beam epitaxy (MBE). Utilizing on‐site scanning tunneling microscopy/spectroscopy (STM/STS) combined with density functional theory (DFT) calculations, the detailed atomic structure of monolayer Co4Te7 is identified, and its formation mechanisms from the synergistic effects of the Co/Te precursor ratio and adlayer‐substrate interfacial coupling are uncovered. The potential flat‐band feature of the monolayer Co4Te7 is also unveiled. This work should hereby offer valuable insights into the engineering of periodic 1D‐defect patterns in 2D materials, as well as the atomic‐scale structure and electronic property characterizations, thus paving ways for their intriguing property investigations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call