Abstract
ZrTe_{5} has recently attracted much attention due to the observation of intriguing nonreciprocal transport responses which necessitate the lack of inversion symmetry (I). However, there has been debate on the exact I-asymmetric structure and the underlying I-breaking mechanism. Here, we report a spontaneous I breaking in ZrTe_{5} films, which initiates from interlayer sliding and is stabilized by subtle intralayer distortion. Moreover, we predict significant nonlinear anomalous Hall effect (NAHE) and kinetic magnetoelectric effect (KME), which are attributed to the emergence of Berry curvature and orbital magnetization in the absence of I symmetry. We also explicitly manifest the direct coupling between sliding ferroelectricity, NAHE, and KME based on a sliding-dependent k·p model. By studying the subsurface sliding in ZrTe_{5} multilayers, we speculate that surface nonlinear Hall current and magnetization would emerge on the natural cleavage surface. Our findings elucidate the sliding-induced I-broken mechanism in ZrTe_{5} films and open new avenues for tuning nonreciprocal transport properties in Van der Waals layered materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.