Abstract
The spontaneous imbibition of liquid in nanopores of different roughness is investigated using coarse grain molecular dynamics (MD) simulation. The numerical model is presented and the simplifying assumptions are discussed in detail. The molecular-kinetic theory introduced by Blake is used to describe the effect of dynamic contact angle on fluid imbibition. The capillary roughness is modeled using a random distribution of coarse grained particles forming the wall. The Lucas-Washburn equation is used as a reference for analyzing the imbibition curves obtained by simulation. Due to the statistical nature of MD processing, a comprehensive approach was made to average and smooth the data to accurately define a contact angle. The results are discussed in terms of effective hydrodynamic and static capillary radii and their difference as a function of roughness and wettability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.