Abstract

We have previously reported that a laminin-apatite composite layer is formed on an ethylene-vinyl alcohol copolymer (EVOH) in a laminin-containing calcium phosphate (LCP) solution. In this work, the stability of the LCP solution and growth process of the laminin-apatite composite layer have been investigated. Dynamic light scattering technique revealed that the LCP solution was stable for periods as long as 24 h; it did not induce homogeneous precipitation of laminin or calcium phosphates in the solution. Analysis of the EVOH surface and the LCP solution showed that the laminin-apatite composite layer was formed via coprecipitation of laminin and apatite on the EVOH plate, i.e., spontaneous growing of apatite and simultaneous immobilization of laminin molecules or laminin–calcium phosphate nano-complexes onto its surface. Transmission electron microscopy also revealed that the laminin molecules in the resulting composite layer were not localized or aggregated, but were dispersed on a nano-scale in the entire layer. Because of this nano-composite structure, a large number of laminin molecules were stably immobilized on the EVOH plate. This may be responsible for the excellent cell adhesion properties of this type of composite material.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call