Abstract

The mechanism of the spontaneous chemical functionalization of Vulcan carbon black by reaction with 4-nitrophenyl diazonium cations was investigated by varying the reaction conditions. First, the carbon black was oxidized by nitric acid reflux to introduce oxygenated functionalities onto the surface prior to the functionalization step. Second, a reducing agent (H3PO2) was added to a solution containing 4-nitrobenzene diazonium tetrafluoroborate to generate 4-nitrophenyl radicals homogeneously in the bulk solution. The functionalized carbons were characterized by elemental analysis, X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption isotherms using the BET isotherm and DFT Monte Carlo simulations. These characterization methods were employed to determine the grafting yield as a function of the reaction conditions. Interestingly, the grafting yield was not affected by a change in the reaction conditions. An average nitrogen content of 1.4 +/- 0.1 atom % was found by elemental analysis, and XPS showed a nitrogen surface concentration of about 3.5%. XPS also indicated an important decrease in the concentration of oxygenated functionalities upon grafting 4-nitrophenyl moieties onto the oxidized carbon black. Presumably, in this case the grafting involves either the coupling of carboxylate and 4-nitrophenyl radicals or, more likely, a concerted decarboxylation where the diazonium cation, acting as an electrophile, replaces the oxygenated groups and loss of CO2. The nitrogen adsorption isotherms of the functionalized carbon blacks suggested that the grafted groups were most probably localized at the entrance of the micropores.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.